E
|
strategias de resolución de problemas | ||
Un aspecto importante a considerar en el proceso de resolución de problemas es la representación. Esta consiste en la transformación de la información presentada a una forma más fácil de almacenar en el sistema de la memoria, e incluye la identificación de las metas y los datos. La representación también ha sido denominada espacio del problema para referirse a las representaciones mentales de los individuos acerca de su estructura y de los hechos, conceptos y relaciones del mismo.
A continuación se presenta un ejemplo para ilustrar cómo se puede representar un problema en la memoria:
Un autobús parte de la parada en la mañana. Se detiene en la primera parada y recoge 5 personas. Sigue hasta la próxima parada y allí suben 6 personas. Continúa hasta la siguiente parada y suben 4 personas. En la próxima parada, suben 5 personas y se bajan 3. En la siguiente parada, suben 5 personas y se bajan 4. En la parada siguiente, suben 6 personas y se baja 1. La próxima vez, suben 3 personas y se bajan 2. La vez siguiente, se bajan 2 personas y no sube nadie. En la siguiente parada nadie espera por el autobús, de manera tal que este no se detiene. En la próxima parada, suben 10 personas y se bajan 3. En la siguiente, suben 3 personas y se bajan 6. Finalmente, el autobús llega al terminal. ¿Cuántas paradas hay en la ruta del autobús? |
La tendencia más común es que la mayoría de los estudiantes puedan decir cuántas personas llegan a la parada final, cuántas subieron o cuántas bajaron, pero muy pocos están en capacidad de indicar cuántas paradas hay en la ruta del autobús debido a que seleccionaron la información numérica como datos importantes y la representaron internamente en la forma de operaciones aritméticas.
En términos de los procesos involucrados en la resolución de problemas, esto sucede porque la meta del problema no estaba bien definida a pesar de que había datos numéricos explícitos precisos. El énfasis sobre el número de personas que suben y bajan del autobús hace posible que los estudiantes piensen que tienen que hacer algo con esos datos y, en tal sentido, construyen una meta la cual se representa como el logro de una cantidad total. Esta decisión conduce a los estudiantes a seleccionar cierta información como relevante (número de personas que suben y bajan del autobús) e ignorar otra (número de paradas del autobús).
Kintsch y Greeno (1985) señalan que una estrategia adecuada para resolver problemas consiste en traducir cada oración del enunciado del problema a una representación mental interna y, luego, organizar la información relevante en una representación mental coherente de la situación descrita en dicho enunciado. En este sentido, se puede señalar que las representaciones mentales, adecuadas o inadecuadas, utilizadas por los individuos para resolver problemas, pueden facilitar o inhibir la solución.
En la literatura sobre la resolución de problemas se pueden distinguir dos tendencias: una que enfatiza el proceso de resolución y otra que resalta el conocimiento base del individuo que resuelve el problema, particularmente la organización de ese conocimiento. En este sentido, podría señalarse que ha habido un cambio en el foco de interés en esta área, el cual ha pasado del análisis de las estrategias generales más o menos independientes de un dominio del conocimiento —como es el caso de los pasos sugeridos por Polya (1965)— al conocimiento base referido al área en la cual el individuo resuelve el problema, como por ejemplo, el conocimiento de la matemática, de la física o de la química, necesario para resolver problemas en estas disciplinas.
Resolver problemas en áreas o dominios específicos requiere, por lo tanto, del conocimiento de la disciplina involucrada. Sin embargo, se ha puesto en evidencia que la sola presencia del conocimiento almacenado en el sistema de memoria, no implica necesariamente que éste va a estar disponible en el momento de resolver el problema.
En años recientes, los investigadores en el área de la resolución de problemas han examinado la ejecución de individuos en tareas que requieren muchas horas de aprendizaje y de experiencia. Los estudios sobre la experticia han focalizado su interés en el examen de las diferencias experto/novato en diferentes áreas del conocimiento.
Desde los inicios de la década de los ochenta, Chi, Feltovich y Glaser (1981) y Chi, Glaser y Rees (1982), realizaron algunos estudios con el fin de examinar el comportamiento de los individuos expertos y novatos cuando resuelven problemas de física. Al resumir los diversos experimentos de sus estudios, estos autores concluyen que las diferencias que caracterizan a los expertos y los novatos cuando resuelven problemas de física son las siguientes:
Los resultados de los estudios realizados conducen a pensar que existen altos niveles de competencia en términos de la interacción entre la estructura de conocimiento del sujeto y sus habilidades de procesamiento, y señalan que las relaciones entre la estructura del conocimiento base y los procesos en la resolución de problemas están mediadas por la calidad de su representación (Gagné y Glaser, 1987).
Las estrategias para resolver problemas se refieren a las operaciones mentales utilizadas por los estudiantes para pensar sobre la representación de las metas y los datos, con el fin de transformarlos en metas y obtener una solución. Las estrategias para la resolución de problemas incluyen los métodos heurísticos, los algoritmos y los procesos de pensamiento divergente.
Los métodos heurísticos son estrategias generales de resolución y reglas de decisión utilizadas por los solucionadores de problemas, basadas en la experiencia previa con problemas similares. Estas estrategias indican las vías o posibles enfoques a seguir para alcanzar una solución.
De acuerdo con Monero y otros (1995) los procedimientos heurísticos son acciones que comportan un cierto grado de variabilidad y su ejecución no garantiza la consecución de un resultado óptimo como, por ejemplo, reducir el espacio de un problema complejo a la identificación de sus principales elementos (p. 20).
Mientras que Duhalde y González (1997) señalan que un heurístico es “un procedimiento que ofrece la posibilidad de seleccionar estrategias que nos acercan a una solución” (p. 106).
Los métodos heurísticos pueden variar en el grado de generalidad. Algunos son muy generales y se pueden aplicar a una gran variedad de dominios, otros pueden ser más específicos y se limitan a un área particular del conocimiento. La mayoría de los programas de entrenamiento en solución de problemas enfatizan procesos heurísticos generales como los planteados por Polya (1965) o Hayes (1981).
Los métodos heurísticos específicos están relacionados con el conocimiento de un área en particular. Este incluye estructuras cognoscitivas más amplias para reconocer los problemas, algoritmos más complejos y una gran variedad de procesos heurísticos específicos.
Chi y colaboradores (1981, 1982), señalan que entre el conocimiento que tienen los expertos solucionadores de problemas están los “esquemas de problemas”. Estos consisten en conocimiento estrechamente relacionado con un tipo de problema en particular y que contiene:
Diversos investigadores han estudiado el tipo de conocimiento involucrado en la resolución de un problema, encontrándose que los resultados apoyan la noción de que la eficiencia en la resolución de problemas está relacionada con el conocimiento específico del área en cuestión (Mayer, 1992; Stenberg, 1987). En este sentido, estos autores coinciden en señalar que los tipos de conocimiento necesarios para resolver problemas incluyen:
Ejemplo de problema
Alvaro tiene un fuerte. Javier tiene tres bolívares más que Alvaro. ¿Cuántos bolívares tiene Javier? |
Cuadro 2.
Tipos de conocimiento requeridos para resolver un problema según Stenberg
(1987)
Paso | Tipos de conocimiento | Ejemplos |
Representación del problema | Lingüístico | Javier tiene tres bolívares más que Alvaro significa: J = A + 3. |
Traducción | Declarativo | Un fuerte equivale a 5 bolívares. |
Integración | Procedimental | Problema de comparación, consistente en dos subunidades y una supraunidad. |
Solución del problema | Tipos de conocimiento | |
Planificación | Estratégico | El objetivo es sumar 3 más 5. |
Ejecución | Algorítmico | Procedimientos para contar. |
Entre los procedimientos heurísticos generales se pueden mencionar los siguientes:
Los algoritmos son procedimientos específicos que señalan paso a paso la solución de un problema y que garantizan el logro de una solución siempre y cuando sean relevantes al problema.
Monereo y otros (1995) señalan que un procedimiento algorítmico es una sucesión de acciones que hay que realizar, completamente prefijada y su correcta ejecución lleva a una solución segura del problema como, por ejemplo, realizar una raíz cuadrada o coser un botón (p. 20).
Por otra parte, Duhalde y González (1997) señalan que un algoritmo es una prescripción efectuada paso a paso para alcanzar un objetivo particular. El algoritmo garantiza la obtención de lo que nos proponemos (p. 106).
De esta manera, el algoritmo se diferencia del heurístico en que este último constituye sólo “una buena apuesta”, ya que ofrece una probabilidad razonable de acercarnos a una solución. Por lo tanto, es aceptable que se utilicen los procedimientos heurísticos en vez de los algorítmicos cuando no conocemos la solución de un problema.
Los procesos de pensamiento divergente permiten la generación de enfoques alternativos a la solución de un problema y están relacionados, principalmente, con la fase de inspiración y con la creatividad.
La adquisición de habilidades para resolver problemas ha sido considerada como el aprendizaje de sistemas de producción que involucran tanto el conocimiento declarativo como el procedimental. Existen diversos procedimientos que pueden facilitar o inhibir la adquisición de habilidades para resolver problemas, entre los cuales se pueden mencionar: